Name:

1. What is the volume of a pyramid whose base is a regular pentagon with an area of $60 \mathrm{~m}^{2}$ and whose height is 10 m ?
2. What is the value of $\mathrm{F}+\mathrm{V}-\mathrm{E}$ for a prism whose cross-section is a heptagon?
3. A torus has the following values $R=15 \mathrm{~m}$ and $\mathrm{r}=\mathbf{4} \mathrm{m}$. What is the volume of the torus?
4. $A B$ is an arc of length 14 in . on the circumference of a circle with center C. The size of angle ACB is 3.5 radians. Find the radius of the circle.

Arc Length Formula:
$\mathrm{L}=\theta \times \mathrm{r}$

Variables:

(Arc length) L= 14 in .
(Angle ACB) $\theta=3.5$ radians
(Radius) $\mathrm{r}=$?
5. $B C$ is an arc with a length of 72 feet on the circumference of a circle with the center D and a diameter of $\mathbf{2 4}$ feet. What is the size of the angle BDC in radians?
6. Convert $2 \pi / 4$ radians to degrees.
7. The following isosceles triangle has two equal sides, each with a length of 10.3. Angle A is a right angle. What is the size of the missing angle " B "?

10.3 in
8. Find the side length of a parallelogram with perimeter of 22 in . and base of 8.3 in.?

Parallelogram Perimeter Formula:
$P=2(b+s)$

Variables:
(Perimeter) $\mathrm{P}=22$
(Base) $b=8.3$
(Side) $\mathrm{s}=$?
9. In the following diagram, what is the size of angle BAC?

Exterior Angle Theorem:
$\angle B A C=\angle B C D-\angle A B C$
10. What is the surface area for a regular tetrahedron when the total length of the edges is 48 mm ? Round to the nearest $1 / 100$ th

Name: \qquad Introduction to Geometry

ANSWERS:

1.

Volume of a Pyramid $=1 / 3 \times$ [Base Area] \times Height
Volume of a Pyramid $=1 / 3 \times 60 \mathrm{~m}^{2} \times 10 \mathrm{~m}$
Volume of a Pyramid $=200 \mathrm{~m}^{3}$
2.

Draw a heptagon prism. The prism has 9 Faces, 14 Vertices and 21 Edges.
$F+V-E=9+41-21=2$
3.

Torus Volume $=2 \times \pi^{2} \times R \times r^{2} \mathrm{~m}^{3}$
Torus Volume $=2 \times \boldsymbol{\pi}^{2} \times 15 \times 16 \mathrm{~m}^{3}$
Torus Volume $=4,737.41 \mathrm{~m}^{3}$
4.
$14=3.5 \times r$
$r=14 \div 3.5$
Radius $=4$ in.
5.
$\mathrm{L}=\theta \times \mathrm{r}$
$72=\theta \times(1 / 2 \times 24)$
$72=\theta \times 12$
$\theta=72 \div 12$
$\theta=6$ radians
6.

Degrees $=2 \pi / 4$ radians
Degrees $=\left[\left(2 \times 180^{\circ}\right) / 4\right]$
Degrees $=360^{\circ} / 4$
$2 \pi / 4$ Radians $=90^{\circ}$ Degrees
7.
$A=90^{\circ}$
$A+B+B=180^{\circ}$

$$
\begin{aligned}
& 90^{\circ}+2 B=180^{\circ} \\
& 2 B=180^{\circ}-90^{\circ} \\
& 2 B=90^{\circ} \\
& B=90^{\circ} / 2 \\
& B=45^{\circ}
\end{aligned}
$$

8.

$22=2(8.3+s)$
$11=8.3+s$
$8.3+s=11$
$\mathrm{s}=2.7$
Side length $=2.7 \mathrm{in}$.
9.
$B A C=141^{\circ}-97^{\circ}$
$B A C=44^{\circ}$
10.

One Edge Length $=48 \mathrm{~mm} \div 6=8 \mathrm{~mm}$
Tetrahedron Surface Area $=\sqrt{ } 3 \times\left[\right.$ Edge Length] ${ }^{2}$
Tetrahedron Surface Area $=\sqrt{ } 3 \times 8^{2} \mathrm{~mm}^{2}$
Tetrahedron Surface Area $=1.732 \ldots \times 64 \mathrm{~mm}^{2}$

